A Puritan twist in our nature makes us think that anything good for us must be twice as good if it's hard to swallow. Learning Greek and Latin used to play the role of character builder, since they were considered to be as exhausting and unrewarding as digging a trench in the morning and filling it up in the afternoon. It was what made a man, or a woman -- or more likely a robot -- of you. Now math serves that purpose in many schools: your task is to try to follow rules that make sense, perhaps, to some higher beings; and in the end to accept your failure with humbled pride. As you limp off with your aching mind and bruised soul, you know that nothing in later life will ever be as difficult.What a perverse fate for one of our kind's greatest triumphs! Think how absurd it would be were music treated this way (for math and music are both excursions into sensuous structure): suffer through playing your scales, and when you're an adult you'll never have to listen to music again. And this is mathematics we're talking about, the language in which, Galileo said, the Book of the World is written. This is mathematics, which reaches down into our deepest intuitions and outward toward the nature of the universe -- mathematics, which explains the atoms as well as the stars in their courses, and lets us see into the ways that rivers and arteries branch. For mathematics itself is the study of connections: how things ideally must and, in fact, do sort together -- beyond, around, and within us. It doesn't just help us to balance our checkbooks; it leads us to see the balances hidden in the tumble of events, and the shapes of those quiet symmetries behind the random clatter of things. At the same time, we come to savor it, like music, wholly for itself. Applied or pure, mathematics gives whoever enjoys it a matchless self-confidence, along with a sense of partaking in truths that follow neither from persuasion nor faith but stand foursquare on their own. This is why it appeals to what we will come back to again and again: our **architectural instinct** -- as deep in us as any of our urges.

The consequence model, the logical one, the amoral one, the one which refuses any divine intervention, is a problem really for just the (hypothetical) logician. You see, towards God I would rather be grateful for Heaven (which I do not deserve) than angry about Hell (which I do deserve). By this the logician within must choose either atheism or theism, but he cannot possibly through good reason choose anti-theism. For his friend in this case is not at all mathematical law: the law in that 'this equation, this path will consequently direct me to a specific point'; over the alternative and the one he denies, 'God will send me wherever and do it strictly for his own sovereign amusement.' The consequence model, the former, seeks the absence of God, which orders he cannot save one from one's inevitable consequences; hence the angry anti-theist within, 'the logical one', the one who wants to be master of his own fate, can only contradict himself - I do not think it wise to be angry at math.

The language of mathematics differs from that of everyday life, because it is essentially a rationally planned language. The languages of size have no place for private sentiment, either of the individual or of the nation. They are international languages like the binomial nomenclature of natural history. In dealing with the immense complexity of his social life man has not yet begun to apply inventiveness to the rational planning of ordinary language when describing different kinds of institutions and human behavior. The language of everyday life is clogged with sentiment, and the science of human nature has not advanced so far that we can describe individual sentiment in a clear way. So constructive thought about human society is hampered by the same conservatism as embarrassed the earlier naturalists. Nowadays people do not differ about what sort of animal is meant by Cimex or Pediculus, because these words are used only by people who use them in one way. They still can and often do mean a lot of different things when they say that a mattress is infested with bugs or lice. The study of a man's social life has not yet brought forth a Linnaeus. So an argument about the 'withering away of the State' may disclose a difference about the use of the dictionary when no real difference about the use of the policeman is involved. Curiously enough, people who are most sensible about the need for planning other social amenities in a reasonable way are often slow to see the need for creating a rational and international language.

Einstein, twenty-six years old, only three years away from crude privation, still a patent examiner, published in the Annalen der Physik in 1905 five papers on entirely different subjects. Three of them were among the greatest in the history of physics. One, very simple, gave the quantum explanation of the photoelectric effect—it was this work for which, sixteen years later, he was awarded the Nobel prize. Another dealt with the phenomenon of Brownian motion, the apparently erratic movement of tiny particles suspended in a liquid: Einstein showed that these movements satisfied a clear statistical law. This was like a conjuring trick, easy when explained: before it, decent scientists could still doubt the concrete existence of atoms and molecules: this paper was as near to a direct proof of their concreteness as a theoretician could give. The third paper was the special theory of relativity, which quietly amalgamated space, time, and matter into one fundamental unity. This last paper contains no references and quotes to authority. All of them are written in a style unlike any other theoretical physicist's. They contain very little mathematics. There is a good deal of verbal commentary. The conclusions, the bizarre conclusions, emerge as though with the greatest of ease: the reasoning is unbreakable. It looks as though he had reached the conclusions by pure thought, unaided, without listening to the opinions of others. To a surprisingly large extent, that is precisely what he had done.

Certainly not! I didn't build a machine to solve ridiculous crossword puzzles! That's hack work, not Great Art! Just give it a topic, any topic, as difficult as you like..."Klapaucius thought, and thought some more. Finally he nodded and said:"Very well. Let's have a love poem, lyrical, pastoral, and expressed in the language of pure mathematics. Tensor algebra mainly, with a little topology and higher calculus, if need be. But with feeling, you understand, and in the cybernetic spirit.""Love and tensor algebra?" Have you taken leave of your senses?" Trurl began, but stopped, for his electronic bard was already declaiming:Come, let us hasten to a higher plane,Where dyads tread the fairy fields of Venn,Their indices bedecked from one to n,Commingled in an endless Markov chain!Come, every frustum longs to be a cone,And every vector dreams of matrices.Hark to the gentle gradient of the breeze:It whispers of a more ergodic zone.In Reimann, Hilbert or in Banach spaceLet superscripts and subscripts go their ways.Our asymptotes no longer out of phase,We shall encounter, counting, face to face.I'll grant thee random access to my heart,Thou'lt tell me all the constants of thy love;And so we two shall all love's lemmas prove,And in bound partition never part.For what did Cauchy know, or Christoffel,Or Fourier, or any Boole or Euler,Wielding their compasses, their pens and rulers,Of thy supernal sinusoidal spell?Cancel me not--for what then shall remain?Abscissas, some mantissas, modules, modes,A root or two, a torus and a node:The inverse of my verse, a null domain.Ellipse of bliss, converge, O lips divine!The product of our scalars is defined!Cyberiad draws nigh, and the skew mindCuts capers like a happy haversine.I see the eigenvalue in thine eye,I hear the tender tensor in thy sigh.Bernoulli would have been content to die,Had he but known such a^2 cos 2 phi!

Furious, the beast writhed and wriggled its iterated integrals beneath the King’s polynomial blows, collapsed into an infinite series of indeterminate terms, then got back up by raising itself to the nth power, but the King so belabored it with differentials and partial derivatives that its Fourier coefficients all canceled out (see Riemann’s Lemma), and in the ensuing confusion the constructors completely lost sight of both King and beast. So they took a break, stretched their legs, had a swig from the Leyden jug to bolster their strength, then went back to work and tried it again from the beginning, this time unleashing their entire arsenal of tensor matrices and grand canonical ensembles, attacking the problem with such fervor that the very paper began to smoke. The King rushed forward with all his cruel coordinates and mean values, stumbled into a dark forest of roots and logarithms, had to backtrack, then encountered the beast on a field of irrational numbers (F1) and smote it so grievously that it fell two decimal places and lost an epsilon, but the beast slid around an asymptote and hid in an n-dimensional orthogonal phase space, underwent expansion and came out, fuming factorially, and fell upon the King and hurt him passing sore. But the King, nothing daunted, put on his Markov chain mail and all his impervious parameters, took his increment Δk to infinity and dealt the beast a truly Boolean blow, sent it reeling through an x-axis and several brackets—but the beast, prepared for this, lowered its horns and—wham!!—the pencils flew like mad through transcendental functions and double eigentransformations, and when at last the beast closed in and the King was down and out for the count, the constructors jumped up, danced a jig, laughed and sang as they tore all their papers to shreds, much to the amazement of the spies perched in the chandelier-—perched in vain, for they were uninitiated into the niceties of higher mathematics and consequently had no idea why Trurl and Klapaucius were now shouting, over and over, “Hurrah! Victory!!

So they rolled up their sleeves and sat down to experiment -- by simulation, that is mathematically and all on paper. And the mathematical models of King Krool and the beast did such fierce battle across the equation-covered table, that the constructors' pencils kept snapping. Furious, the beast writhed and wriggled its iterated integrals beneath the King's polynomial blows, collapsed into an infinite series of indeterminate terms, then got back up by raising itself to the nth power, but the King so belabored it with differentials and partial derivatives that its Fourier coefficients all canceled out (see Riemann's Lemma), and in the ensuing confusion the constructors completely lost sight of both King and beast. So they took a break, stretched their legs, had a swig from the Leyden jug to bolster their strength, then went back to work and tried it again from the beginning, this time unleashing their entire arsenal of tensor matrices and grand canonical ensembles, attacking the problem with such fervor that the very paper began to smoke. The King rushed forward with all his cruel coordinates and mean values, stumbled into a dark forest of roots and logarithms, had to backtrack, then encountered the beast on a field of irrational numbers (F_1) and smote it so grievously that it fell two decimal places and lost an epsilon, but the beast slid around an asymptote and hid in an n-dimensional orthogonal phase space, underwent expansion and came out fuming factorially, and fell upon the King and hurt him passing sore. But the King, nothing daunted, put on his Markov chain mail and all his impervious parameters, took his increment Δk to infinity and dealt the beast a truly Boolean blow, sent it reeling through an x-axis and several brackets—but the beast, prepared for this, lowered its horns and—wham!!—the pencils flew like mad through transcendental functions and double eigentransformations, and when at last the beast closed in and the King was down and out for the count, the constructors jumped up, danced a jig, laughed and sang as they tore all their papers to shreds, much to the amazement of the spies perched in the chandelier—perched in vain, for they were uninitiated into the niceties of higher mathematics and consequently had no idea why Trurl and Klapaucius were now shouting, over and over, "Hurrah! Victory!!

Two writings of al-Hassār have survived. The first, entitled Kitāb al-bayān wa t-tadhkār [Book of proof and recall] is a handbook of calculation treating numeration, arithmetical operations on whole numbers and on fractions, extraction of the exact or approximate square root of a whole of fractionary number and summation of progressions of whole numbers (natural, even or odd), and of their squares and cubes. Despite its classical content in relation to the Arab mathematical tradition, this book occupies a certain important place in the history of mathematics in North Africa for three reasons: in the first place, and notwithstanding the development of research, this manual remains the most ancient work of calculation representing simultaneously the tradition of the Maghrib and that of Muslim Spain. In the second place, this book is the first wherein one has found a symbolic writing of fractions, which utilises the horizontal bar and the dust ciphers i.e. the ancestors of the digits that we use today (and which are, for certain among them, almost identical to ours) [Woepcke 1858-59: 264-75; Zoubeidi 1996]. It seems as a matter of fact that the utilisation of the fraction bar was very quickly generalised in the mathematical teaching in the Maghrib, which could explain that Fibonacci (d. after 1240) had used in his Liber Abbaci, without making any particular remark about it [Djebbar 1980 : 97-99; Vogel 1970-80]. Thirdly, this handbook is the only Maghribian work of calculation known to have circulated in the scientific foyers of south Europe, as Moses Ibn Tibbon realised, in 1271, a Hebrew translation.[Mathematics in the Medieval Maghrib: General Survey on Mathematical Activities in North Africa]

To return to the general analysis of the Rosicrucian outlook. Magic was a dominating factor, working as a mathematics-mechanics in the lower world, as celestial mathematics in the celestial world, and as angelic conjuration in the supercelestial world. One cannot leave out the angels in this world view, however much it may have been advancing towards the scientific revolution. The religious outlook is bound up with the idea that penetration has been made into higher angelic spheres in which all religions were seen as one; and it is the angels who are believed to illuminate man's intellectual activities.In the earlier Renaissance, the magi had been careful to use only the forms of magic operating in the elemental or celestial spheres, using talismans and various rituals to draw down favourable influences from the stars. The magic of a bold operator like Dee, aims beyond the stars, aims at doing the supercelestial mathematical magic, the angel-conjuring magic. Dee firmly believed that he had gained contact with good angels from whom he learned advancement in knowledge. This sense of close contact with angels or spiritual beings is the hallmark of the Rosicrucian. It is this which infuses his technology, however practical and successful and entirely rational in its new understanding of mathematical techniques, with an unearthly air, and makes him suspect as possibly in contact, not with angels, but with devils.